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The problem of an explosion is considered on the basis of a model of a viscoplast ic  medium. 
It follows f rom the solution that the theore t ica l  dependence of the cavity radius on the t ime 
coincides sa t is factor i ly  with the experimental  data. The introduction of v iscosi ty  into the 
scheme of the motion leads to the appearance of the sealing effect. F r o m  an analysis of the 
s t r e s s  field, a conclusion follows concerning the existence, even in the initial stage of mo-  
tion , of intense tangential  tensile s t r e s ses ,  which lead to the formation of a sys tem of radial  
f i s sures ,  observed in the experiment .  

A large amount of theoretical work has been devoted to the problem of an explosion [1-5]. The pur- 
pose of this work was to obtain and estimate the various parameters which characterize a fully contained 
explosion in the ground: the radius developed by the camouflet cavity, its time of development, intensity 
of the radiated elastic waves, etc. Obviously, within the scope of a single theoretical model it is difficult 
to describe the whole process from the start of detonation to the total cessation of motion. In particular, 
the intensive cracking of the cavity boundary, which is characteristic of a fully contained explosion, is not 
explained. Recently, papers have appeared in print whose authors attempt to explain this phenomenon [6, 
7]. The explanation for this is founded on the basis of the well-known model of the ground, but with the ap- 
propriate choice of parameters forthe condition of plasticity, far from reality [6], which makes this explana- 
tion unlikely, or has been based on semiempirical criterial estimates [7]. Nevertheless, such an instabil- 
ity of the gas cavity boundary is needed in a more obvious physical representation and explanation. 

It [s clear "a priori," that the formation of a system of radial fissures can occur by the action of in- 
tense tangential tensile stresses. In the proposed paper, such a stress field is constructed on the basis of 
a model of a viscoplastic medium. It should be noted that the idea of taking account of the viscous proper- 
ties of the ground in the solution of dynamic problems clearly belongs to Lyakhov, having determined ex- 
perimentally the viseosity of sand [8] and who used this model for solving wave problems [9]. 

We shall construct the solution on the basis of the most simple scheme of motion - a model with con- 
stant packing. This model, which is mathematically simple, describes well all the principal characteristics 
of the phenomenon. By analogy with [2], we represent the motion of the ground in the following way: At the 
instant of time t-- 0 and in a cavity with initial radius a0, an instantaneous release of energy oecurs, after 
which a shock wave is propagated through the ground. The medium behind the wave front is uncompressed 
and, according to the concepts assumed by us, it is viscoplastic. The problem will be solved in the ease of 
central symmetry. The equations of motion and continuity have the form 

(,z~ , d~ ~% 2(%-%) ( 1~  
P \-'d-~ ~- u dr / = dr -~ r ; 

(r~'u) O, (2) = 

where u is the bulk velocity; ~ r  and cr 0 =~0  are  the components of the s t ress  tensor ;  p is the density of 
the medium behind the shock-wave front.  
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TABLE 1 

?Ft. 

| 

I Sand 

0,45 . 

0,355 

Loess 

0,425 

0,96 

] Clay 

0,233 

1,42 

In the usual  fo rm,  the re la t ion  between the components  
of the s t r e s s  t e n s o r  and the t ensor  of the ra te  of deformat ion  
f o r  an incompress ib le ,  v i scoplas t ic  medium is wr i t ten  in the 
f o r m  [10] 
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where  sij a r e  the components  of the s t r e s s  deviator;  eij a r e  
the components  of the t enso r  of the ra te  of deformation;  H = 
(2eij, eij)1/2 is the intensi ty of the r a t e  of deformation;  T s iS 
the Mises  yield point; p is the coefficient of humidity.  For  
soi ls ,  the yield point depends on the hydros ta t ic  p r e s s u r e ,  and 
the condition of p las t ic i ty  is known f rom exper imen t s  [5]: 

s~j.slj  =2(k ~-rnp) 2, (4) 

where  m and k a r e  constants ,  cha rac t e r i z ing  the in ternal  f r i c -  
tion and the ground coupling; p = - ( a r  +2~0)/3 is the hydro-  
s ta t ic  p r e s s u r e .  I t  is p roposed  below to combine Conditions (3) 
and (4) for  descr ib ing  the s t r e s s e d  s ta te  of the ground. Then, 
in the case  of spher ica l  s y m m e t r y ,  the condition of plast ic i ty ,  
taking account of the ra te  of deformat ion,  a s s u m e s  the fo rm 

2 /0u  ~ )  
Or - -  (lo = - - n  + m (  or  + 2(lo ) -7 ~ I~ L-~r - -  

or ,  using the equation of continuity, 

e~ - -  ~o=--k+m(~T+2ao) --  2I~u/r. (5 )  

Solving Eqs.  (1) and (2), we obtain 

u=~(t) /r2;  (6) 

3m ( a - - t )  r ( c ~ _ 4 ) r 4  , 3 m ( ~ - - 3 )  r a + . C ( t ) ,  

where  a = 6m/(1 +2m), and the dot denotes different iat ion with 
r e spec t  to t ime .  

The p rob lem is  solved fo r  the following boundary con- 
ditions: at the cavi ty  boundary, r = a, 

aT(a) : - - P ( a ) ,  

at the shock-wave front,  r =R 

u(R)=~#; 

o /n)=-p0~R~ - p,, 

where ~ = 1 -  p o /p  is the "packing" of the ground; p 0 is the initial density; P* is the init ial  p r e s s u r e  in 
the ground. 

F r o m  the law of conserva t ion  of m a s s  of m a t t e r ,  we obtain the re la t ion  express ing  the connection b e -  
tween the cavi ty  radius and the coordinate  front  of the shock wave, 

B =  ~ ~ �9 a = e ( a ) a .  (7) 

We de te rmine  the function X(t) at the cavi ty  boundary, 

X(0=a~a. (8) 

Substituting the express ion  for  a r  in the boundary conditions, and using re la t ions  (7) and (8), having 
e l iminated C(t) we obtain the o rd ina ry  different ial  equations re la t ive  to the cavi ty  radius ,  
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The instant of t ime when a = 0 should be taken for the cessat ion of motion. 

We introduce dimensionless  variables  by the formulas  

x=a/a  o, "c =t/aoV'~fio/Po , 

where 19 o is the initial p re s su re  in the detonation products.  Then in place of Eq. (9) we obtain 

e__~z. 2+ 

(,Ix ~2jr_ ,u 1/~,-~'o 2a(a--l)(l--~)(~--a--l) I dx 
x ~ ]  ~ - -  >-7 a,,~ (~-  3)(,~-~_ j) Y~ x ~ - 

_ ( ~ -  ~) (~ - ~) [PL(~) p ,  k ( e ~ -  1)] (10) 
- ( ~ - ~ - 1 ) ~  [ ~o P0 ~ amP~ 

The dimensionless  combination a0p 0/p ~ " ~ 0 ,  which can be identified in sense with the Reynolds number  
(well known in viscous liquid theory,  and which we shall subsequently use) is fac tored out in the coefficient 
for  the third  t e r m  on the left-hand side of Eq. (10). 

UnfortunateIy, even by neglecting the initiM stage of motion, i.e., when e ~ - 1 / 3  it is not possible to 
obtain a solution in closed form.  Equation (10) has been integrated by means of a computer .  The function 
p(a) was determined in the  following way: 

�9 - - 3 7 z  P (a) = jPo (a/ao) , if a,/.~ a > a o 
[Po (a,/ao) - ~ '  (a/a,) -~* ,  if a > a, ,  

where P0 =8 �9 101~ dyn/cm2; y 1 =3; Y2 = 1.27 and a ,  =1.53 a 0. The initial density of the ground p 0 in the cal-  
culations was assumed equal to 1.6 g / c m  3 and the viscosi ty  of the ground, p =3 �9 105 p, which corresponds 
to sand [8]. The ground packing was var ied within the limits f rom 0.025 to 0.1. The pa ramete r s  cha rac t e r -  
izing the internal friction and the ground coupling are  chosen on the basis of experimental  data [11] (Table 1). 

An example of the numer ica l  calculation is given in Fig. 1, where the theore t ica l  function a(t) is plot- 
ted for sand, with ~ =0.05; P .  =106 dyn/cm 2, corresponding to the explosion of a charge with a weight of 1 g 
(curve 3) and, for comparison,  the experimentaI  curves  according to data f rom [12, 13] are  plotted. Qualita- 
tively, the behavior of the theoret ical  function calculated by us coincides weI1 with the experimental  data. 
The difference in the determination of the final cavity radius can be attributed to imperfect ion of the the-  
oret ical  model, i.e., we must  formulate  more  prec ise ly  the equation of state of the ground, p(p), taking into 
account variable packing, and we must  solve the even more  complex problem. But it should be emphasized 
that even in this simplified formulation the introduction of viscosi ty  into the scheme of motion with the ac-  
tually acceptable experimental  pa rame te r s  defining the internal friction, the coupling, ground packing, the 
equation of state of the detonation products,  and the initial p ressu re  P .  gives good agreement  with the ex- 
per imental  data. 

The dependence of the final cavity radius x k and the t ime of development Vk on the magnitude of the 
packing ~ can be judged f rom Table 2, where the data shown corresponds to an explosion in sand with P ,  = 0 
and a0=5.36 cm. It can be seen f rom the table that the magnitude of the final radius in this case  is changed 
insignificantly; the t ime of development of the cavity is changed by much more,  by a factor  4. 

The law os motion of the camouflet  cavity can be determined as a function of a set of dimensionless 
pa ramete r s  

a=ao.f(v, Be, P,/Po,  h/Po, m, ~); (11} 

here  R e = n o  pff~oPo/p . 

TABLE 2 

r k 

T k 

0,1 

12,8w 

0,167i .105 

0,075 

12,21 

0,1282.i05 

0,05 

11,4 

0,858.10 ' 

o,o25 

10,23 

0,4174. I0 ' 
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It follows f r o m  Eq. (11) that  camouf le ts  produced in ground with a de-  
fined v i scos i ty  by explosions of  cha rges  with a different  weight will not be 
geomet r i ca l ly  s im i l a r .  

The effect  of the sca l ing  effect  on the final radius  of the camoufle t  cavi ty  
can be es t imated  by Fig.  2, when the dependence of x k on the Re number  is 
plotted fo r  sand, with ~ =0.05 and P ,  =0. With inc rease  of the sca le  of the 
explosion R e ~ o ,  the function Xk(Re) tends asympto t ica l ly  to the value Xk= 
16.15, i .e. ,  at  la rge  sca les  the geomet r i c  s i m i l a r i t y  in the n o r m a l  sense  is 
mainta ined.  The region of change of Re f rom 2 to 38 is of the g rea t e s t  in- 
t e r e s t  (which co r responds  to an explosive cha rge  of ~ 30 g to ~ 200 kg), in 
which the geomet r i c  s i m i l a r i t y  was ver i f ied  d i rec t ly  by exper imen t .  The 
final radius  va r i e s  in this case  l l . 12a  0 to 13.7a0, approx imate ly  by 19-23%. 
As the sur face  of the camoufle t  in loess ,  loam, or  clay is pe r fo ra t ed  by nu- 
m e rous  radia l  f i s s u r e s  and m e a s u r e m e n t s  of the final cavi ty  dimensions  a re  
c a r r i e d  out with a finite e r r o r  of ~ 10%, it is difficult to detect  any d i f fe r -  
ence f r o m  geomet r i c  s imi l a r i ty .  

The second mos t  impor tant  p a r a m e t e r  of motion (the t ime  of final de-  
velopment  of the cavity) v a r i e s  in this  case  much  m o r e  signif icantly (by a 
fac tor  of s eve r a l  t imes) .  T h e  function ~k(Re), re f lec t ing  the dependence of 
the final t ime  of development  of  the camoufle t  on the scaling, for  values  of 

=0.05 and P ,  = 0, is plotted in Fig. 3. Here ,  jus t  as  in Fig.  2, the charge  s i zes  q in k i log rams ,  equivalent 
to a given value of Re, a re  plotted along the abc i s sa .  Exper imenta l ly ,  it is impor tan t  to find the difference 
f r o m  the geomet r i c  s imi l a r i t y  with r e s p e c t  to this p a r a m e t e r  (t ime of development  of the camouflet) ,  but 
unfortunately,  we do not yet have these  data avai lable .  By evaluating the behavior  of the curves  in Figs .  2 
and 3, we a r r i v e  at the following conclusion: the effect  of v i scos i ty  becomes  of lit t le impor tance  when 
Re ~- 20 (which is equivalent to an explos ive  charge  of N 30 kg). Above a value of Re =20, contained ex-  
plosions in sand can be assumed,  with good accuracy ,  to be geomet r i ca l ly  s i m i l a r .  

In o rde r  to analyze the s t r e s s e d  state,  we de te rmine  (r r .  F r o m  re la t ion  (6) and the boundary condi- 
t ion at the sur face  of the cavi ty  we have 

p " ' [ . .~  | ' [ ~ ( a ,a] ~ 2p [ a._a___(.~)ce]__ 
[ r 

�9 2p  2 9 ~  a u a 

Determining a~" f rom the equation of motion (8) and convert ing to d imens ion less  var iab les ,  we obtain for  
the radia l  s t r e s s e s  

(-:.; [+ (;]} - + • 

, ,. i x  (§ 
X x ctT Po ea--~------~i - -  - -  

x a k 

We de te rmine  the tangential  component of the s t r e s s  t ensor  % f rom the condition of p las t ic i ty  (5): 

I - -  m k 2~t u 

or,  in d imens ionless  fo rm,  
" ~  I - - m  ~ k ~ 2 ] /-~ x 2 dx 
~ 0 = ~ _ ~ . ~ r  ~ ( l~-2m) Po ~ (1.T2m) lle z a d~'  

(13) 

where  z = r / a  o. 
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It  can be concluded f r o m  the f o r m  of Z0, that  with a suff icient ly high veloci ty  of the cavi ty  boundary,  
the appea rance  of t ens i le  s t r e s s e s  is poss ib le  (it should be be rne  in mind that  ~ r  in absolute  magni tude is  
a lways negat ive) .  Calculat ions conf i rm th is  conclusion,  Curves  a r e  shown in Fig.  4, i l lus t ra t ing  the na-  
t u r e  of the  change of the s t r e s s e d  s ta te  of sand as a r e su l t  of the explosion of a charge  of ~ 27 g (p =3 �9 105 
p). Curve 1 c o r r e s p o n d s  to a cavi ty  radius  of a =1.13 a0, cu rve  2 - 1.17 a0, and curve  3 - 1.33 a 0. The 
cu rves  for  Z r  a r e  not drawn; the r ad ia l  s t r e s s  during the en t i re  mot ion will be c o m p r e s s i v e  and will de-  
c r e a s e  monotonical ly  f r o m  the cavi ty  boundary to the shock-wave f ront .  Al ready  when a =1.17 no, a zone 
of intensive t ens i l e  s t r e s s e s  will  extend f rom the boundary of the  camouf ie t  into the depths of the ground. 
As the s tabi l i ty  of sand to an explosion is insignificant ,  we should put Z 0 = 0 in this  region,  by which the 
zone of c racking  is int roduced into the solution. This  is not taken into account in the solution, as it s t i l l  
r e m a i n s  unc lear  how to desc r ibe  the genera l ized  s tate  of the med ium behind the  front  of the zone of c r ack -  
ing. The appea rance  of f i s s u r e s  was  obse rved  by the authors  of [6] when c a r r y i n g  out expe r imen t s  in sand 
with charges  c lose  in sca le ,  with an inc rease  of the cavi ty  rad ius  by a f ac to r  of 2.1 to 2.2. The difference 
between our  value and the expe r imen ta l  value can be explained, on the one hand, by the imperfec t ion  of our  
theore t i ca l  model  but, on the other  hand, it is not at all  obvious that  the appearance  of tens i le  s t r e s s e s  is 
accompanied  rapidly  by b lu r r ing  of the image  of the ga s - cav i t y  boundary,  obse rved  in the expe r imen t s .  

It  follows f r o m  the f o r m  of the exp re s s ion  for  Z 0 (13) that  in a medium with ze ro  v i scos i ty  the ap-  
pea rance  of t ens i le  s t r e s s e s  is poss ib le  only when the radial  s t r e s s  becomes  comparab l e  with the coupling 
fo rces  in the ground, ~ r ~ k .  Fo r  compar i son ,  Fig.  5 shows cu rves  of ~0(z) for  the s ame  values of a as 
in Fig.  4. With expe r imen ta l  values of kN 1 k g / c m  ~, this  is poss ib le  only in the final s tage of motion,  c lose  
to the instant  of cessa t ion ,  and the  magnitude of the tens i le  tangent ia l  s t r e s s  in this  case  is insignif icant  - 
of o r d e r  k. Hence, it follows that  the appearance  of tens i le  s t r e s s e s  at the initial  s tage of motion is due 
en t i r e ly  to the v i scos i ty  of the ground.  

It follows also f r o m  fo rm u l a s  (12) and (13) that  the s t r e s s  f ield around the cavi ty  depends on the scale  
of the explosion.  Fo r  l a r g e - s c a l e  explosions,  the appearance  of t ens i le  tangent ia l  s t r e s s e s  mus t  occur  at 
r e la t ive ly  l a rge  cavi ty  radi i .  Thus,  on a suff icient ly la rge  sca le  of the effect ,  the ground around the cavi ty  
will be in a s ta te  of hydros ta t i c  c o m p r e s s i o n  during the ent i re  t ime  of motion,  and the appearance  of radia l  
f i s s u r e s  should not be obse rved .  Moreover ,  for  media  with smal l  in te rna l  f r ic t ion  (clay, sa tu ra ted  ear th) ,  
the poss ib i l i ty  of the appearance  of t ens i le  Z 0 is  less  probable  than fo r  med ia  with la rge  values of m (loess,  
loam).  This ,  in par t i cu la r ,  explains the fact  that  during explosions in clay,  compa ra t i ve ly  s m a l l e r  f i s s u r -  
ing of the camoufle t  wal ls  is obse rved  than for  loess  or  loam. 

The author  thanks E. N. Shera for  useful  comment s ,  and ~.  B. Polyaka and M. A. Shabat for  a s s i s -  
tance in c a r ry ing  out the compute r  calcula t ions .  

LITERATURE CITED 

I. A. Yu. Ishlinskii, I. V. Zvolinskii, and I. Z. Stepanenko, "The dynamics of ground masses," Dokl. 
Akad. Nauk SSSR, 95, No. 4 (1954) o 

2. A.S. Kompaneets, "Shock waves in a plastic packing medium," Dokl. Akad. Nauk SSSR, 109, No. 1 
(1956). 

3. 1~. I .  Andrianski i  and V. P. Koryavov,  "The shock wave in a va r i ab l e -pack ing  plas t ic  medium,"  Dokl. 
Akad. Nauk SSSR, 128, No. 2 (1959). 

4. E . I .  Shemyakin, "Expansion of a gas cavi ty  in an incompress ib le  e l a s t i c - p l a s t i c  medium,"  Pr ik l .  
Mekh. Tekh.  Fiz . ,  No. 5 (1961). 

5. S .S .  Grigoryan,  "The solution of the p rob lem of an underground explosion in soft  soils,,, P r ik l .  
Matem.  Mekh., 2.~8, No. 6 (1964). 

6. L . V .  Al ' t shu le r ,  A. V. Balabanov,  V. A. Batalov,  V. A. Rodionov, and D. M. Ta rasov ,  "Radiographic  
invest igat ion of the init ial  s tage of development  of a camouflet  cavity in sandy soil ," Fiz .  Goreniya  
i Vzryva,  _6, No. 3 (1970). 

7. G . I .  Chernyi  and A.V. Mikhalyuk, "Development  of radia l  f i s s u r e s  as a r e su l t  of explosions in com-  
p r e s s i b l e  rocks , "  F i z . -Tekh .  Probl .  Raz r .  Polezn.  Iskop.,  No. 3 (1969). 

8. G . M .  Lyakhov,  "Dete rmina t ion  of the v iscous  p rope r t i e s  of soil ," P r i k h  Matem.  Mekh., No. 4 (1968). 
9. G . M .  Lyakhov and Ya. N. Pachepski i ,  "Computat ion of the v i scous  and plas t ic  p rope r t i e s  in the solu-  

t ion of wave p rob lems , "  P r ik l .  Matem.  Mekh., No. 2 (1973). 
10. L . M .  Kachanov, P r inc ip les  of the Theory  of P las t ic i ty  [in Russian],  Nauka, Moscow (1969). 
11. S .S .  Gr igoryan,  " Invest igat ion into soil  mechanics , "  Doctora l  Disser ta t ion ,  Moscow State Univers i ty ,  

Moscow (1965). 

227 



12. V.A. Krivtsov and L. A. Semenova, "Approximate determination of the development of the cavity 
as the result of the fully contained explosion of a spherical charge in the ground," prikl. Mekh., 
Akad. Nauk UkrSSR, 3, No. 9 (1967). 

13. O.S.  Kolkov, A. M. Tikhomirov, and A. F. Shalukevieh, "Development of a cauldron cavity by an ex- 
plosion in sandy ground, Fiz. Goreniya i Vzryva, 3, No. 4 (1967). 

228 


